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[1] The accurate specification of modeling and observational error information
required by data assimilation algorithms is a major obstacle to the successful
application of a land surface data assimilation system. The source and statistical
structure of these errors are often unknown, and poor assumptions concerning
the relative magnitude of modeling and observation uncertainty degrade the
quality of land data assimilation products. In theory, adaptive filtering approaches
are capable of estimating model and observation error covariance information
during the online cycling of a data assimilation system. To date, however,
these approaches have not been widely applied to land surface models.
Here, we implement and compare four separate adaptive filtering schemes
in a data assimilation system designed to ingest remotely sensed surface
soil moisture retrievals. Upon testing of each scheme via a synthetic twin data
assimilation experiment, three of the four adaptive approaches are found
to provide substantially improved soil moisture estimates. However,
the specific model and observation characteristics of satellite-based surface
soil moisture retrievals contribute to the relatively slow convergence
of all schemes. Overall, results highlight the need to consider unique aspects
of the land data assimilation problem when designing and/or evaluating
the relative performance of adaptive filtering algorithms.
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1. Introduction

[2] Hydrologic state and flux variable estimates derived
from off-line land surface model simulations are valuable
for a range of applications including: drought monitoring,
numerical weather prediction, and hydrologic forecasting.
Such estimates, however, are typically degraded by a range
of error sources that afflict the modeling of land surface
hydrologic conditions (e.g., improper parameter selection,
errors in forcing data, and a simplistic representation of
actual land surface processes and heterogeneity). Recently,
a large number of studies have attempted to address these
error sources through the assimilation of remotely sensed
surface soil moisture estimates into a land surface model
[e.g., Walker and Houser, 2001; Reichle et al., 2002; Crow
and Wood, 2003; Reichle and Koster, 2002, 2005; Reichle
et al., 2007; Drusch, 2007]. Such approaches are generally
based on variants of a standard Kalman filter in which
optimal weighting is applied to model forecasts and con-
current soil moisture retrievals to obtain a soil moisture
analysis product with minimized error. The success of this

approach is partially dependent on the accurate a priori
specification of both a model noise covariance (representing
uncertainty in model state forecasts) and an observation error
covariance (representing uncertainty in remotely sensed soil
moisture retrievals). In practice, however, such information
is difficult to obtain and poor specification of these error
quantities has been shown to degrade the performance of
land data assimilation systems [Reichle and Koster, 2002;
Crow and Van Loon, 2006; Reichle et al., 2008].
[3] Adaptive filtering schemes refer to algorithms which

attempt to estimate observation and model noise error cova-
riances during the course of the filter analysis procedure. In
this way, such schemes are able to automatically calibrate
filters and prevent the application of excessive weight to
either model background forecasts or updating observations.
However, the wide range and variety of potential adaptive
schemes and their strict assumptions and limitations compli-
cate efforts to design an effective approach for any particular
application. Gelb [1974], for example, cautions against
adopting general adaptive filtering schemes on the basis of
theoretical considerations and suggests that an application-
specific heuristic strategy may be more effective. Such
caution is likely to be particularly relevant for the use of
adaptive methods in land data assimilation systems since
land surface models differ significantly in structure and error
characteristics relative to ocean and atmospheric models used
in previous applications of adaptive filtering techniques to
geophysical modeling. One key difference is that, unlike
atmospheric forecast models, the physics of off-line land
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surface models are fundamentally damped in nature [Reichle
et al., 2002]. As a result, uncertainty associated with the
misspecification of initial conditions is progressively reduced
over time and replaced with model errors that originate from
inaccurate forcing data (e.g., precipitation) and model struc-
tural errors that impact the partitioning of the surface water
balance.
[4] Because of land surface heterogeneity, land data

assimilation systems must also contend with a lack of spatial
stationarity in model error characteristics [Yates et al., 2003].
By contrast, model error characteristics in atmospheric
models are generally assumed to be spatially homogeneous
[Dee, 1995]. This allows the use of simplified error models
and the application of ergodic sampling techniques whereby
spatial averaging is employed to improve the sampling of
filtering diagnostics necessary to implement adaptive filter-
ing approaches [Mitchell and Houtekamer, 1999]. Such
ergodic sampling techniques are almost certainly inappro-
priate for land models applied to highly inhomogeneous
landscapes. As a result, sampling issues surrounding the
accurate estimation of filtering diagnostics, and the conver-
gence of adaptive filters based on these diagnostics, are likely
to be of prime concern for the application of adaptive filters to
land data assimilation problems. Finally, the land surface
state observations utilized in data assimilation (e.g., soil
moisture and temperature) are often derived from relatively
noisy and vertically incomplete remote sensing retrievals.
Surface soil moisture retrievals from current passive micro-
wave sensors, for example, sample only the top 1 to 3 cm of
the soil column [Jackson, 1993]. Taken as a whole, these key
differences imply that adaptive filtering techniques should be
evaluated on the basis of their appropriateness for addressing
challenges unique to land data assimilation.
[5] Reichle et al. [2008] take an initial step in this

direction by developing an adaptive filtering procedure
specifically for a land surface model. In the present paper,
we apply their approach along with three additional adaptive
filtering techniques to a soil moisture data assimilation
problem and evaluate each approach on the basis of its
ability to efficiently reconstruct known error covariance
properties, and thus optimize ensemble Kalman filter (EnKF)
performance, on the basis of information available during the
operational cycling of a land data assimilation system.
Because land data assimilation is typically performed using
one-dimension filtering [Reichle and Koster, 2003], we
restrict ourselves initially to a synthetic twin experiment
methodology applied at a point scale. Instead, special em-
phasis is placed on the temporal convergence properties of
filters and the degree to which particular adaptive filtering
schemes are appropriate for a land data assimilation system.

2. Approach

[6] Our approach is based on a synthetic twin data
assimilation experiment in which four separate adaptive
filtering approaches are evaluated on their ability to filter
noise which has been artificially introduced into a land
surface model. Land surface modeling is discussed in
section 2.1. The implementation of the four adaptive filtering
approaches to the EnKF is described in sections 2.2 and 2.3,
and section 2.4 summarizes the overall design of the syn-
thetic twin experiment.

2.1. Land Surface Modeling

[7] The synthetic twin experiment employed here is
based on the synthetic generation of soil moisture fields
using the water and energy balance surface vegetation
atmosphere transfer (WEB-SVAT) model. The model was
developed by merging a force restore soil hydrology model
[Noilhan and Planton, 1989; Montaldo et al., 2001], with a
two-layer vegetation/soil energy balance formulation utiliz-
ing a vertical canopy structure identical to that employed by
the parallel version of the two-source model of Norman et
al. [1995]. A full description of the model is given by Crow
et al. [2008] and briefly summarized here.
[8] The Web-SVAT water balance approach is based on

the vertical division of the soil column into surface and root
zone reservoirs. These two reservoirs are modeled as
vertically overlapping such that the surface zone constitutes
the top fraction of the root zone. The temporal evolution of
surface layer soil moisture (qsz) is given by

dqsz
dt

¼ B1

dsz
Pg � Es

� �
� B2

t
qsz � qeq
� �

; ð1Þ

where Pg is precipitation throughfall, Es direct soil
evaporation, t the frequency of diurnal variations (24 h),
and dsz the depth of the surface layer. Parameters B1 and B2

are soil texture and soil moisture dependent and qeq is a
function of root zone soil moisture (qrz) such that the second
term in (1) estimates the diffusive flux of water between the
surface and bulk root zone [Noilhan and Planton, 1989;
Montaldo et al., 2001]. For the root zone, the analogous
balance equation is

dqrz
dt

¼ 1

drz
Pg � T � Es � D
� �

; ð2Þ

where T is plant canopy transpiration, drz the root zone soil
depth, and drainage D out the bottom of the root zone
parameterized using soil saturated hydraulic conductivity
Ks, porosity qsat, and the pore size distribution index
parameter b as

D ¼ Ks

qrz
qsat

� �2bþ3

: ð3Þ

[9] Evaporative flux components in (1) and (2) are
determined by solving a two-layer energy balance equation
for canopy and surface aerodynamic skin temperatures, and
partitioning between total precipitation and Pg is based on a
simple canopy storage formulation [Crow et al., 2008].
Here dsz is set to 0.05 m and drz to 0.50 m. Soil hydrologic
conductivity parameters are based on observed soil texture
and look-up tables [Noilhan and Planton, 1989; Cosby et
al., 1984]. The WEB-SVAT model is well suited for our
comparative study because of its parsimonious parameter-
ization, computational efficiency, and the ease with which it
can be linearized. While WEB-SVAT is simpler than most
off-line land surface models (e.g., relative to schemes
applied by Dirmeyer et al. [1999] or Rodell et al.
[2005]), it still captures the key nonlinear attributes of
more complex land surface models.
[10] The study domain is the Optimizing Production
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(OPE3) site located at the USDA-ARS Beltsville Area
Research Center in Beltsville, Maryland. Vegetation cover
consisted of cultivated corn, typically planted in May and
harvested in October. Soil texture at the site is sandy loam
[Gish et al., 2005]. Meteorological variables (rainfall, air
temperature, solar radiation, relative humidity and wind
speed) are based on half-hourly observations made at the
site during the 2001–2004 growing seasons. Long-term
synthetic results are based on running the model on a
half-hour time step and repeatedly cycling through the
approximately 600 days of forcing data observations avail-
able at the site. Detailed validation results for the applica-
tion of the Web-SVAT model to the OPE3 site are available
in work by Crow et al. [2008].

2.2. Ensemble Kalman Filtering

[11] The ensemble Kalman filter (EnKF) is based on
utilizing a Monte Carlo ensemble of model realizations to
obtain the error covariance information required by the
Kalman filter update equation [Evensen, 1994]. Formally,
the forecast step for a particular ensemble member i
between times t � 1 and t can be expressed as

xt;i� ¼ f xt�1;iþ; qt;i
� �

; ð4Þ

where xt,i� and xt�1,i+ are the forecast state vector at time t and
the analysis state vector at time t� 1, respectively. Themodel
perturbation vector qt,i represents uncertainty added to
analysis state predictions during forecasting. Estimation of
its covariance (Qt) is a key goal of adaptive filtering.
Following forecasting, and the acquisition of a measurement
at time t, the Kalman filter update equation produces a new
analyzed state vector (xt,i+)

xt;iþ ¼ xt;i� þKt yt;i �Htxt;i�
� �

; ð5Þ

where yt,i denotes the a suitably perturbed [Burgers et al.,
1998] observation vector and Ht is an observation operator.
The Kalman gain matrix Kt is given by

Kt ¼ PtH
T
t HtPtH

T
t þ Rt

� ��1
; ð6Þ

where Pt is the forecast error covariance (sampled from
individual realizations of xt,i� within the ensemble), Rt the
observation error covariance, and the superscript T denotes a
matrix transpose operator. The accurate estimation of Rt and
Qt is a critical precondition for the optimal specification ofKt

and determines the weighting between model forecasts and
new observations. In this study we focus on cases in which a
priori guesses forQt and Rt are (intentionally) poorly chosen
and then dynamically adjusted with adaptive filtering
techniques.
[12] All results are based on the assimilation of synthetic

surface soil moisture retrievals into the two-state (i.e.,
surface and root zone soil moisture) WEB-SVAT model at
a single point that represents the OPE3 site. Potential
temporal variations in error covariances are not considered,
and Q and R are assumed to be constant in time. As such,
Ht � H = (1,0), Kt reduces to the vector Kt (with the same
dimension as xt) and R simplifies to the constant scalar error
variance R. We will also further assume that Q is of the form

Q ¼ Q aQr
aQr a2Q

� �
;

where r is the correlation coefficient between perturbations
applied to the surface and root zone soil moisture layers and
a is the ratio of perturbation standard deviations for the root
and surface zones. Q is assumed to capture the aggregate
impact of all model errors (regardless of their source). This
includes errors arising from uncertainty in surface meteo-
rological forcings or land model parameters, which are not
separately modeled here.

2.3. Adaptive Filters

[13] A commonly used diagnostic for adaptive filtering is
the difference between observations and forecasts encoun-
tered during the application of (5)

vt ¼ E yt;i � Hxt;i�
� �

; ð7Þ

where E{�} is the ensemble mean operator. For the simple
case examined here of a single observation (i.e., scalar
HPtH

T and R), vt can be normalized as

~vt ¼ Efyt;i � Hxt;i�g= HPtH
T þ R

� �1=2
: ð8Þ

[14] Linear filtering theory mandates that, for a properly
parameterized filter, a ~vt time series should be mean zero,
serially uncorrelated and have a temporal variance of one
[Gelb, 1974].
2.3.1. Mehra Approach
[15] The adaptive filtering approach presented by Mehra

[1970], hereafter referred to as the ‘‘Mehra’’ algorithm, is
based on sampling the temporal variance (C0) and lag-1
autocovariance (C1) of the vt time series defined by (7).
Originally, the Mehra approach was developed for a linear
forecast model F updated with equally spaced observations
(in time) and nonvarying error covariance parameters. For
such systems, the background error covariance immediately
before updating always reaches the same steady state value
P0, which further implies a constant Kalman gain K0 = P0H

T

(HP0H
T + R)�1. TheMehra approach then consists of a set of

equations which offers a closed-form solution for Q and R.
First, P0H

T is computed with

P0H
T ¼ HFð ÞT HFð Þ

h i�1

HFð ÞT C1 þ HFK0C0ð Þ ð9Þ

followed by the (scalar) R as

R ¼ C0 � HP0H
T : ð10Þ

[16] Knowledge of C0 and C1 is also sufficient to define a
single constraint on Q

HQ F�1
� �T

HT

¼ P0H
T

� �T F�1
� �

HT � HFP0H
T � HW F�1

� �T
HT ; ð11Þ

where

W ¼ F �K0 P0H
T

� �T�P0H
TKT

0 þ K0C0K
T
0

h i
FT : ð12Þ

[17] In our implementation of the Mehra approach, we
divide the experiment period into discrete, nonoverlapping
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N-day periods that each contain multiple updates via (5). The
vt time series within the jth such period is then sampled to
obtain C0,j and C1,j.
[18] Adaptation of the Mehra approach to the nonlinear

WEB-SVAT requires several additional considerations. First,
a unique single steady state gain K0 will not exist when the
EnKF is applied to a nonlinear model. Here, we pragmati-
cally estimate K0,j for the jth N-day period by simply
averaging time-varying values of Kt for each daily update
within this period. Because the nonlinear WEB-SVAT model
cannot be expressed in a time constant matrix F, we also
approximate F with a 2 
 2 matrix (F0) that contains a
tangent linear approximation to the Web-SVAT model. Ele-
ments ofF0 are then averaged within the jthN-day window to
approximate Fj.
[19] At the end of the jth N-day period, C0,j, C1,j, K0,j and

Fj are input into (9) and (10) to obtain a new estimate of R,
denoted with R0

j. Using (11) and (12), these inputs can also be
used to estimate a single parameter within theQmatrix (Q0

j).
Since each application of (9) to (12) for a given period j
should yield unbiased estimates of both Q and R [Mehra,
1970], these new estimates are averaged with previously
acquired values to obtain new a priori estimates of R and Q
for the adaptive EnKF during time window j + 1

Qjþ1 ¼ 1=j
Xj

l¼1

Q0
l ð13Þ

Rjþ1 ¼ 1=j
Xj

l¼1

R0
l: ð14Þ

2.3.2. Empirical Whitening
[20] As described above, the application of the closed-

form Mehra algorithm to a nonlinear model is potentially
problematic and may undermine the accuracy of its Q and R
estimates. An alternative adaptive approach is therefore to
use an iterative search technique and tune the ratioQ/R until a
serially uncorrelated vt time series is obtained. A white
innovation time series is a fundamental property of an
optimal filtering algorithm and indicates the extraction of
all observational information in a single update step [Gelb,
1974]. Empirical approaches to such whitening are poten-
tially more robust than theMehra approach when applied to a
nonlinear model.
[21] Here, two separate techniques will be used for empir-

ically whitening the innovation time series. These techniques
are applied separately as an alternative to the closed-form
Mehra approach. The first whitening approach, referred to as
‘‘nudge whitening,’’ is based on a simple rule-based updat-
ing. Starting from initial guesses forQ and R (Q0 and R0), the
approach empirically updates the ratioDj�Qj/Rj on the basis
of the sign of the sampled lag-1 autocovariance C1 of the vt
time series within the jth N-day window

Djþ1 ¼
cDj C1;j > 0

Dj C1;j ¼ 0

c�1Dj C1;j < 0

8<
:

9=
;;

where c > 1 is an empirical factor, chosen here as c = 2.
Positive (negative) sampled values of C1,j indicate the filter
is placing too little (much) weight on updating observations
relative to background state predictions [see, e.g., Crow and

Bolten, 2007]. The nudging procedure attempts to correct
any such imbalance via empirical adjustments to the relative
magnitude of Q and R.
[22] A competing updating approach, referred to here as

‘‘secant whitening,’’ is to use a first-order secant root finder
to estimate the value of D at which C1 is zero (i.e., the vt
time series is serially uncorrelated). The secant whitening
update is based on sampling C1 from the vt time series
within discrete windows j � 1 and j to approximate the j + 1
value of Qj+1/Rj+1 as

Djþ1 � Qjþ1=Rjþ1 ¼ Dj � Dj�1 �Dj

� �
C1;j�1 � C1;j

� ��1
: ð15Þ

[23] Such an approach is more sophisticated than the
nudging approach in that the magnitude of the update is
based on a linear fitting to results for both the current and
previous N-day window.
[24] For the derivation of new estimates of Q and R, the

new estimate of Dj is combined with a constraint on the
total error C0 equal to the sum of the model and observation
error covariance (10). Assuming that the ratio Qj/Rj is close
to optimal, and therefore C1 near zero, Rj+1 for both
whitening approaches can be approximated (for this scalar
case) by combining (6), (8) and (10) to yield

R0
jþ1 ’ C0;j 1� HK0;j

� �
ð16Þ

or equivalently,

R 0
jþ1 ’ ~C0;jRj; ð17Þ

where ~C0,j is the variance of ~vt sampled within the jth N-day
window. The error variance Q0

j+1 is then estimated as

Q 0
jþ1 ¼ R 0

jþ1Djþ1: ð18Þ

[25] Here, a final moving average procedure is added to
smooth estimates prior to their insertion back into the
adaptive EnKF

Qjþ1 ¼ Q 0
jþ1=2þ Qj=2 ð19Þ

Rjþ1 ¼ R 0
jþ1=2þ Rj=2: ð20Þ

2.3.3. Desroziers Approach
[26] The approach of Desroziers et al. [2005], hereafter

referred to as the ‘‘Desroziers’’ algorithm, is based on the
specification of two additional filtering diagnostics, wt and
ut, to complement vt. The analysis departure wt is defined as
the difference between the predicted and actual observations
after Kalman updating

wt ¼ E yt;i � Hxt;iþ
� �

: ð21Þ

[27] The observation analysis increment ut represents the
impact of the update in observation space

ut ¼ E H xt;iþ � xt;i�
� �� �

: ð22Þ

[28] Following Desroziers et al. [2005], these diagnostics
can be combined with vt to yield two separate constraints

E utv
T
t

� �
¼ HPtH

T ð23Þ

E wtv
T
t

� �
¼ R; ð24Þ
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where E[�] denotes the temporal mean operator. Choosing
values of Q and R that respect these two constraints should
lead to optimized filter performance.
[29] Reichle et al. [2008] derive an operational procedure

for the online tuning of Q and R to meet the constraints
imposed by (23) and (24). Their adaptive filter attempts to
estimate the ratio between true input error variances and
(potentially poor) initial guesses for such variances (R0 and
Q0) by comparing assumed values of HPtH

T (which vary as
a function of Q) with values of E[ut vt

T] obtained during the
integration of an EnKF, and, simultaneously, by comparing
assumed values of R with corresponding values of E[wt vt

T].
To this end, they define a moving average operator (MA[�])
of the form MA[x]t = (1 � d)MA[x]t�1 + d � xt with an ad
hoc choice of d = 0.02. This operator is then used to
separately sample terms in (23) and (24) and calculate the
ratios

fQ;t ¼ bMA uvT
� �

t
=MA HPtH

T
� �

t
ð25Þ

fR;t ¼ MA wvT
� �

t
=MA R½ �t: ð26Þ

[30] The factor b will be explained below. Because of
residual noise in the moving average estimates, fQ,t and fR,t
are restricted to the interval [(1 + d)�1, (1 + d)], with d =
0.005. The restricted scaling factors ~f Q,t and ~f R,t are then
used to adjust the most recent estimates of Q and R via

Qtþ1 ¼ ~fQ;tQt ð27Þ

Rtþ1 ¼ ~fR;tRt: ð28Þ

[31] In practice, this means Qt and Rt are decreased or
increased by only a relatively small fraction at each update
time, no matter how far the originally calculated fractions fQ,t
and fR,t are from unity. In addition, Qt+1/Q0 and Rt+1/R0 are
restricted to the interval [0.01, 100], and, consequently, error
covariances are not allowed to stray more than 2 orders of
magnitude from the initial estimates. Reichle et al. [2008]
also introduced the tuning parameter b in (25) to address the
generally nonlinear relationship between the model error
covariance Q and the forecast error covariance P. The ad
hoc value of b = 1.06 tuned by Reichle et al. [2008] will also
be used here. In the following section, a sensitivity analysis
will be conducted to determine the impact of variations in b
on key results. Note that, in contrast to the Mehra and secant
whitening approaches in which Q and R values are updated
only upon completion of discrete N-day periods, the Desroz-
iers approach continuously updates Q and R after every daily
observation.

2.4. Synthetic Twin Experiment

[32] The four adaptive filtering schemes described above
(i.e., the Mehra, nudge whitening, secant whitening and
Desroziers approaches) are evaluated on the basis of their
performance in a synthetic twin experiment. Here, the true
model noise error covariance Qtrue is defined by assuming
a = 0.30, r = 0.70 and Sqrt(Qtrue) = 0.05 vol/vol, where all
soil moisture error values are given in terms of volumetric
moisture content (i.e., the volume of water per total volume of
soil). During adaptive filtering, both a and r are assumed

known. Consequently, deriving the full Qtrue matrix reduces
to the problem of identifying the scalarQtrue (see section 2.2).
[33] Using daily additive qt perturbations with covariance

Qtrue, a single integration of the Web-SVAT model is
perturbed and its soil moisture output defined as ‘‘truth.’’
Surface soil moisture qsz estimates from this truth run are
then perturbed with additive noise, statistically consistent
with a specified true R (Rtrue), to form a set of daily
observations. Unless otherwise specified, Sqrt(Rtrue) =
0.04 vol/vol. These daily observations are then reassimilated
into an unperturbed WEB-SVAT model integration using a
25-member ensemble Kalman filter (EnKF). EnKF estimates
are derived from averaging soil moisture across the ensem-
ble and evaluated on the basis of their ability to recreate the
soil moisture results from the ‘‘truth’’ simulations.
[34] To test a specific adaptive filtering approach, the

EnKF portion of this synthetic experiment is replicated across
a stratified grid of guesses for the magnitude of Sqrt(Qtrue)
and Sqrt(Rtrue). Such initial estimates are referred to as
Sqrt(Q0) and Sqrt(R0). Each adaptive filtering approach is
then evaluated on the basis of its ability to adaptively correct
inaccurate Sqrt(Q0) and Sqrt(R0) estimates and converge
upon Qtrue and Rtrue. Using growing season meteorological
observations at the OPE3 site, each approach is tested over a
period of 3000 days in which daily (synthetic) observations
of surface soil moisture are continuously assimilated. Unless
otherwise stated, a sampling period N of 50 days will be used
for the Mehra, secant whitening and nudge whitening
approaches.

3. Results

[35] For the synthetic twin experiment outlined above,
Figure 1 describes the sensitivity of EnKF results (derived
without adaptive filtering) to the accuracy of Q0 and R0

estimates. Coordinate values of Sqrt(Q0) and Sqrt(R0) in
Figure 1 represent assumed error values in units of volumetric
soil moisture and the surface height captures the long-term
root-mean-square error (RMSE) accuracy of EnKF soil
moisture estimates associated with these assumptions. True
values of Sqrt(Q) and Sqrt(R) (Sqrt(Qtrue) and Sqrt(Rtrue)) are
indicated by white crosses. To avoid spin-up effects, surface
RMSE values in Figure 1 are calculated by discarding the
first 1000 days of the simulations and sampling RMSE
between days 1001 and 3000. Transient convergence char-
acteristics during the first 1000 days of the simulation will be
discussed later. Both the long-term RMSE for qsz (Figure 1a)
and qrz (Figure 1b) display a broad minimum which encom-
passes both Sqrt(Qtrue) and Sqrt(Rtrue), thus confirming that
optimal filter performance is associated with accurate error
covariance assumptions [Crow and Van Loon, 2006; Reichle
et al., 2008].
[36] Open loop results (not shown) capture the uncorrected

impact of model error Qtrue prior to the application of the
EnKF. For this combination of Sqrt(Qtrue) and Sqrt(Rtrue),
open loop RMSE values of 0.056 and 0.035 vol/vol are
obtained for qsz and qrz, respectively. The RMSE surface in
Figure 1 falls below these open loop error levels for nearly all
choices of Sqrt(Q0) and Sqrt(R0); however, as in the work by
Reichle et al. [2008], the impact of poorly estimatingQ and R
can be large enough such that the EnKF estimates are worse
than the open loop estimates (see, e.g., the bottom right-hand
corner of Figures 1a and 1b).
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[37] In theory, the application of adaptive filtering
schemes should improve results in Figure 1 by correcting
initially poor estimates of Q and R. For all four adaptive
schemes presented in section 2 (i.e., the Mehra, Desroziers,
secant whitening and nudge whitening approaches), Figure 2
demonstrates this potential by plotting the temporal evolution
of Q and R estimates as each adaptive filtering approach is
run online with the EnKF. Each symbol in Figure 2 represents
a single realization of an entire 25-member adaptive EnKF
run. Black plus signs capture the stratified pattern of Sqrt(Q0)
and Sqrt(R0) used to initialize each realization. A clear pattern
of convergence toward Qtrue and Rtrue (represented by the
single black cross in each plot) can be observed for all four
adaptive filtering approaches. The improved calibration of Q
and R values captured in Figure 2 should enhance the
performance of the EnKF relative to the baseline case in
Figure 1 in which (potentially poor) initial estimates ofQ and
R are not adaptively updated.
[38] Figures 3 and 4 explicitly capture the improvement in

EnKF qsz and qrz estimates for all four filtering approaches.
As in Figure 1, coordinate values of Sqrt(Q0) and Sqrt(R0)
represent initial assumptions concerning Qtrue and Rtrue.
However, the plotted surface height now represents the
change in EnKF RMSE (defined as adaptive EnKF RMSE
minus the nonadaptive EnKF RMSE) realized upon imple-
mentation of each adaptive filtering technique. The bold line
in each plot represents the zero contour separated areas of
degraded results (indicated in red) from areas in which
application of the adaptive filter improves EnKF results.
Negative contour heights in Figures 3 and 4 indicate that all
four adaptive approaches are generally able to improve upon
uncorrected results in which Q0 and R0 are not updated
(Figure 1). Unsurprisingly, net reductions in RMSE tend to
be greatest for values of Q0 and R0 that differ significantly
from Qtrue and Rtrue (see white crosses in Figures 3 and 4).
When initial estimates of Q and R are assumed to be
relatively good (i.e., Q0 and R0 are near Qtrue and Rtrue), it
is possible for the adaptive filter to slightly degrade EnKF
results. Such degradation is particularly clear for Mehra qsz
results plotted in Figure 3a. For a broad area of Figure 3a in
which Q0 > R0, application of the Mehra algorithm slightly
reduces the accuracy of EnKF surface soil moisture predic-
tions relative to a baseline case of no adaptive filtering.
However, these problems do not appear to extend into root

zone results plotted in Figure 4, where the Mehra approach
performs relatively well.
[39] An additional qualitative difference among the four

approaches is the relatively poor performance of the secant
whitening algorithm. This difference is clearest in the
bottom right corner of Figures 3c and 4c. Here the other

Figure 2. Observed convergence of Q and R estimates
obtained from the Mehra, Desroziers, secant whitening, and
nudge whitening adaptive filtering approaches for various
daily time steps. The black crosses represent Sqrt(Qtrue) and
Sqrt(Rtrue).

Figure 1. Contour plots of variations in (a) EnKF qsz and (b) EnKF qrz RMSE as a function of Sqrt(Q0)
and Sqrt(R0) for the case of no adaptive filtering with Sqrt(Qtrue) = 0.05 vol/vol and Sqrt(Rtrue) = 0.04 vol/
vol (white crosses).
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three approaches are able to realize significant reductions in
EnKF soil moisture RMSE; however, the secant whitening
approach is limited to marginal improvement (or even slight
degradation) relative to the baseline case of no adaptive
filtering. This lack of improvement appears to arise from the
difficulty of obtaining accurate updates using a two-step
secant root finder in the presence of significant sampling
uncertainty in C1,j estimates. The impact of such uncertainty
on the difference between C1,j�1 and C1,j, required by the
secant root finder in (15) to predict subsequent updates,
impairs the ability of the root finder to skillfully update error
covariance estimates and thus inhibits the convergence of
the approach. As a result, the secant whitening approach
will not be considered in subsequent results.

3.1. Adaptive Convergence

[40] As noted in section 1, a key aspect of adaptive filtering
(particularly for land models) is the speed at which adaptive
filtering estimates of Q and R converge upon true values.
Figure 5 examines this issue by plotting the time series of
Sqrt(Q) and Sqrt(R) RMSE obtained by sampling the mean
squared difference (at each time step) between estimated and
true error covariance values for all initial choices of Q0 and
R0. Results are shown for all three remaining adaptive
filtering approaches (the Mehra, Desroziers, and nudge
whitening techniques). For comparison, Figure 5 also plots

time series results for the case of no adaptive filtering. All
three approaches clearly improve upon the case of no
adaptive filtering. Among the adaptive filtering approaches,
the Mehra algorithm produces the lowest eventual R and Q
RMSE. However, the relative superiority of the Mehra
approach is small and emerges only after the assimilation
of about 2000 daily observations (Figures 5a and 5b). During
earlier portions of the synthetic twin experiment, both the
nudge whitening and the Desroziers approach produce supe-
rior estimates ofQtrue and Rtrue. Figure 5c plots the analogous
time series for WEB-SVAT qrz RMSE. As in Figures 5a and
5b, the error is based on sampling across all initial choices for
Q0 and R0. To improve its readability, the RMSE time series
in Figure 5c is smoothed within a 150-day window prior to
plotting. The initially poor specification of Q and R seen in
the Figures 5a and 5c clearly hampers the early performance
of the Mehra approach with regards to qrz estimation.
However, after a lengthy convergence period, the Mehra
approach is able to converge upon a slightly more optimal
filter calibration than either the Desroziers or nudge whiten-
ing approach.
[41] Despite its eventual accuracy, the slow convergence

rate of the Mehra algorithm in Figure 5 is striking. It is
useful to consider what aspects of the land data assimilation
problem contribute to this difficulty. To this end, we
regenerated Figure 5 for the case of a purely linear model,

Figure 3. The impact of adaptive filtering on surface zone soil moisture (qsz) RMSE as a function of Q0

and R0 for the case of the (a) Mehra, (b) Desroziers, (c) secant whitening, and (d) nudge whitening
adaptive filtering approaches, where Sqrt(Qtrue) = 0.05 vol/vol and Sqrt(Rtrue) = 0.04 vol/vol (white
crosses). The thick black line indicates the zero contour (indicating no RMSE change upon
implementation of an adaptive filter).
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calibrated to approximate WEB-SVAT soil moisture esti-
mates, and found qualitatively similar results (not shown),
suggesting that WEB-SVAT nonlinearities do not signifi-
cantly contribute to the slow rate of convergence. In
addition, because the Mehra approach is not based on an
iterative search, its rate of convergence is relatively insen-
sitive to variations in Q0 and R0. Instead, the problem
appears to originate from properties of the assimilated
observations themselves. Soil moisture observations assim-
ilated into land surface models are, in actuality, retrievals
based on relatively complex inverse radiative transfer mod-
eling. Consequently, they are prone to high levels of
observation error, potentially up to and greater than
Sqrt(Rtrue) = 0.06 vol/vol for densely vegetated areas, which
can overwhelm modest autocorrelation signals associated
with poorly calibrated filters (and therefore weaken the
conceptual basis of adaptive filtering updates). This is
demonstrated in Figure 6a where the ability of the Mehra
approach to converge on accurate Q levels is significantly
degraded (enhanced) by an increase (decrease) in Rtrue.
[42] Remotely sensed retrievals of surface soil moisture are

also limited by restrictions in the vertical penetration depth of
microwave observations. A lack of vertical support for
measurements effectively limits the temporal memory pres-
ent in surface soil moisture retrievals and thus the extent of
temporal autocorrelation present in background errors. This

is critical since the contrast between autocorrelated errors in
background WEB-SVAT soil moisture estimates (due to soil
moisture memory) and the purely uncorrelated error assumed
for surface soil moisture retrievals is the basis on which the
Mehra algorithm simultaneously estimates both Q and R.
This basis is effectively weakened if the amount of memory
present in the observed surface soil moisture state is reduced.
Figure 6b plots cases where the vertical depth of the top
WEB-SVAT soil moisture layer used is systematically varied
during the synthetic twin experiment. Results in Figure 6
confirm that better Mehra algorithm convergence can be
achieved if observations are assumed to originate from a
thicker surface soil moisture layer.

3.2. Enhancing Convergence

[43] Unfortunately, the observation characteristics dis-
cussed in connection with Figure 6 are fixed attributes of
remotely sensed surface soil moisture retrievals that cannot
be modified in real data applications. Several aspects of the
adaptive filtering approaches introduced in section 2, how-
ever, can be modified in an operational environment. One
possibility is changing the length of the estimation period
used to sample C0 and C1 in the Mehra and nudge whitening
approaches. Results for the Mehra approach display mark-
edly little sensitivity to the length of the sampling period N
(Figure 7a). The reduced sampling uncertainty afforded by a

Figure 4. The impact of adaptive filtering on root zone soil moisture (qrz) RMSE as a function of Q0

and R0 for the case of the (a) Mehra, (b) Desroziers, (c) secant whitening, and (d) nudge whitening
adaptive filtering approaches, Sqrt(Qtrue) = 0.05 vol/vol and Sqrt(Rtrue) = 0.04 vol/vol (white crosses).
The thick black line indicates the zero contour (indicating no RMSE change upon implementation of an
adaptive filter).
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larger N is canceled by the decrease in the frequency of
updates to eitherQ or R required by a longer sampling period.
Slightly more sensitivity to N is noted for the nudge whiten-
ing approach. Here, a lower value forN leads to a faster rate of
convergence; however, it also increases the eventual Q
RMSE level that the adaptive filter is able to converge to
(Figure 7b).
[44] An alternative possibility is to constrain noisyQ and R

estimates within predefined bounds. For instance, since the
variance C0 represents the aggregate impact of model obser-
vation and modeling error, it provides an upper bound for
both Q and R. Likewise, by definition, both error variances
must be positive. Consequently, the following two con-
straints can be implemented for both the Mehra and nudge
whitening approaches

Q 0
jþ1 ¼ Max 0;Min Q0

jþ1;C0;j

� �h i
ð29Þ

R 0
jþ1 ¼ Max 0;Min R0

jþ1;C0;j

� �h i
ð30Þ

prior to updating using (13) and (14) (for the Mehra
approach) or (19) and (20) (for the nudge whitening
approach).
[45] Figure 8 shows that, at least for default values of

Sqrt(Qtrue) = 0.05 vol/vol and Sqrt(Rtrue) = 0.04 vol/vol,
implementation of these constraints leads to dramatic im-
provement in the temporal convergence of Q values for the
Mehra approach. Qualitatively similar results (not shown)
are obtained for R. This implies that a large portion of the
slow convergence for the Mehra approach in Figure 5 is
attributable to variability originating from physically unre-
alistic estimates of Q0 and R0. However, this benefit comes at
a cost of reducing the robustness of the approach. While
(29) and (30) are effective for cases in which Rtrue and Qtrue

are approximately equal, physically unrealistic values elim-
inated by these constraints play a role in ensuring adequate
convergence in cases where total error covariance is dis-
proportionately apportioned to either R or Q. For instance,
in a low-Qtrue and high-Rtrue case, negative Q

0 values, while
physically unrealistic, are required to ensure that individual
Q0 estimates are unbiased and therefore converge to Qtrue

upon temporal averaging. Consequently, the truncation of
negative Q0 values to zero via (29) introduces a positive bias
in eventual estimates of Q. While the application of the
constraints (29) and (30) enhances the speed at which the
Mehra approach converges, it introduces biases which
hamper the ultimate fidelity of the approach. Figure 9
illustrates the potential trade-off. As a result, the constrained

Figure 5. Time series of (a) predicted Sqrt(Q) RMSE,
(b) predicted Sqrt(R) RMSE, and (c) EnKF qrz RMSE for
various adaptive filtering strategies. Results are based on
sampling across a stratified range of Sqrt(Q0) and Sqrt(R0).
Time series results in Figure 5c have been smoothed with a
150-day moving average window.

Figure 6. Impact of (a) Rtrue and (b) the vertical
measurement depth of surface soil moisture retrievals on
the convergence of Q estimates obtained using the Mehra
approach.
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Mehra approach performs well (relative to the original
Mehra approach) for the case Rtrue � Qtrue (middle plot)
but does not converge accurately for Qtrue � Rtrue (far left
plots) or Qtrue � Rtrue (far right plots). Qualitatively
analogous results are obtained for the nudge whitening
approach (not shown).
[46] A final possibility is to assume Rtrue is known and

reduce the adaptive filtering problem to the estimation of
Qtrue only. Assuming direct observation of surface soil
moisture retrievals (i.e., H = (1,0)), accurate a priori
estimates of Rtrue can be used to estimate P0H

T via (10).
Relative to more uncertain estimates of P0H

T obtained from
(9) without direct knowledge of Rtrue, these new values can
be used to obtain a more precise approximation of Qtrue via
(11). This impact is clearly seen in Figure 8 where an
assumption of perfectly known Rtrue substantially improves
the performance of the Mehra algorithm. Unlike the con-
strained variant of the Mehra approach described above,
additional synthetic twin experiments (not shown) demon-
strate that the effectiveness of this modification is not
limited to a certain range of Qtrue.

3.3. Tuning of the Desroziers Method

[47] A potentially problematic aspect of the Desroziers
approach as implemented by Reichle et al. [2008] lies in the
need to introduce the ad hoc scaling parameter b in (25) to
ensure the robust performance of the algorithm. Up to this
point, all Desroziers results have been based on the choice
of b = 1.06 suggested by Reichle et al. [2008]. Here this
issue is examined in greater detail by comparing the

Figure 8. The Q convergence of the original Mehra
approach, the Mehra approach in which Q and R estimates
are constrained via application of (29) and (30), and the
Mehra approach in which Rtrue is assumed to be known.

Figure 9. The observed convergence of Q and R
estimates obtained from the original and constrained
Mehra approaches for a variety of Sqrt(Qtrue) and Sqrt(Rtrue)
(black crosses), via (29) and (30), for various daily time
steps.

Figure 7. Impact of sampling period length N on the rate
of convergence seen in Q estimates obtained from the
(a) Mehra and (b) nudge whitening adaptive filtering
approaches.
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performance of the algorithm for various choices of b.
Figure 10 compares the adaptive Q and R convergence
observed for b = 1.00, 1.06 and 1.12. Maximum conver-
gence (i.e., lowest Q and R RMSE) for both Q and R is
observed for the choice of b = 1.06 suggested by Reichle et
al. [2008]. However, slightly higher or lower choices of b
can lead to the long-term drift of estimated Q and R away
from their true values and potentially unstable adaptive
filtering performance.
[48] A more detailed analysis (not shown) indicates that

the b factor impacts the ratio Q/R in long-term adaptive
filtering results with lower b associated with lower estimated
Q/R. This is critical because in linear filtering theory, it is this
ratio which controls the manner in which relative weighting
is applied to model background and new observations during
implementation of the EnKF. The approximate correspon-
dence of optimal b values found here and in the work by
Reichle et al. [2008] is somewhat surprising given that
completely different land surface models (and different
synthetic twin experimental setups) are employed in each
case. This may imply that optimal values of b are, to at least to
a first approximation, model independent. However, further
study is required to understand the theoretical basis of b and
potential difficulties encountered in its robust estimation.

4. Summary and Conclusions

[49] The application of an EnKF to a land surface model
requires that the filter be provided error covariance esti-

mates of both modeling noise (Q) and observation uncer-
tainty (R) (Figure 1). The true values of these error
parameters, however, depend on the application at hand
and are typically difficult to estimate a priori. Here, four
separate adaptive filtering approaches (described in section 2
and referred to as Mehra, Desroziers, secant whitening and
nudge whitening approaches) are evaluated on the basis of
their ability to recover unknown scalar Q and R magnitudes
during the online implementation of the EnKF to a surface
soil moisture data assimilation problem (Figure 2). Out of the
four approaches, the secant whitening adaptive filtering
method performs the worst with regards to enhancing model
soil moisture estimates (Figures 3 and 4). Of the three more
successful adaptive filtering approaches, the Mehra approach
provides superior long-term convergence to true Q and R
(Figures 5a and 5b) and therefore slightly improved EnKF
performance (Figure 5c). The successful application of the
Mehra approach to the nonlinear WEB-SVAT model is
noteworthy. The relatively crude approximations required
by this application (see section 2.3.1) would likely be
inappropriate for a highly nonlinear atmospheric model
containing unstable modes but appear to be sufficient for a
land surface model with fundamentally damped physics.
[50] Despite this success, the utility of the Mehra ap-

proach is reduced by its relatively slow rate of convergence
(Figure 5). Such slow convergence is likely to be particu-
larly problematic for the application of adaptive filtering
techniques to land surface models since typical land surface
spatial heterogeneity suggests that model error parameters
should vary laterally over a given domain. Consequently,
ergodic assumptions, in which temporal sampling difficul-
ties are eased through spatial sampling, cannot be applied
with confidence. These difficulties are exacerbated by the
shallow and noisy nature of soil moisture retrievals derived
from microwave remote sensing which retard the adaptive
convergence of the Mehra approach (Figure 6). The con-
vergence speed of the Mehra approach does not improve
upon lengthening of the time period over which innovation
statistics are sampled (Figure 7). In contrast, a sharp
improvement in convergence is noted when the Mehra
approach is constrained to predict only physically realistic
values of Q (Figure 8). This improvement, however, reduces
the fidelity of the approach with regards to cases in which
Qtrue and Rtrue are not approximately equal (Figure 9). In an
operational setting, the only effective strategy for improving
the convergence of the Mehra approach may be to assume
Rtrue is known and limit the adaptive filtering retrieval to the
estimation of Qtrue only (Figure 8).
[51] The nudge whitening and Desroziers approaches

appear to provide viable alternatives to the Mehra approach.
In particular, both approaches provide faster adaptive con-
vergence at a cost of only minor reductions in long-term
accuracy (Figure 5). These empirical approaches may also
be better suited to implementation within an EnKF-based
land data assimilation system than the closed form Mehra
approach. Land surface model error in an EnKF implemen-
tation is commonly introduced via Monte Carlo–based
variations in forcing data and model parameter, in addition
to (or instead of) the direct perturbation of state vectors
captured by Q. Consequently, the analytical calculation of
Q by the Mehra approach may not be of direct value for
efforts to constrain the magnitude of model uncertainty

Figure 10. Impact of the b parameter on the convergence
of (a) Q and (b) R obtained using the Reichle et al. [2008]
implementation of the Desroziers approach.
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induced indirectly via noise in model forcings and/or
parameter selection. In contrast, the more flexible iterative
nature of the empirical approaches (i.e., nudge whitening
and Desroziers) can be applied to tune any type of modeling
error chosen to generate the EnKF Monte Carlo ensemble.
This potential benefit, however, must be weighed against
parameterization issues facing these empirical approaches.
In particular, the Reichle et al. [2008] implementation of the
Desroziers approach requires a fairly complex parameteri-
zation. Of particular concern is the b parameter introduced
by Reichle et al. [2008] and its impact on Desroziers
adaptive filtering results (Figure 10).
[52] Despite progress made here, our analysis is limited

by several factors that could be addressed in future work.
First, by assuming a and r parameters in Q are known (see
section 2.2), we focus only on the estimation of model error
magnitudes. In reality a number of additional model error
parameters describing the vertical, lateral and temporal
autocorrelation of model error will need to be constrained.
In addition, a more general analysis would examine a
broader range of land surface observations including re-
motely sensed snow and land surface temperature. Finally,
the point-scale nature of the study prevents us from exam-
ining the impact of variations in land cover and/or micro-
meteorological conditions on the performance of various
adaptive filters. Additional work addressing any of these
limitations would likely prove worthwhile.
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